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Lattice thermal conductivity of a quantum well limited by umklapp, impurity, and boundary scattering was
investigated theoretically by taking into account dispersion of confined acoustic-phonon modes. We show that
strong modification of phonon group velocities due to spatial confinement leads to a significant increase in the
phonon relaxation rates. From the numerical calculations, we predict a decrease by an order of magnitude of
the lattice thermal conductivity in a 100-Å-wide free-standing quantum well. Our theoretical results are con-
sistent with recent experimental investigations of the lateral thermal conductivity of nitride/silicon/oxide mem-
branes conducted in our group.�S0163-1829�98�00928-X�

I. INTRODUCTION

Thermal properties of semiconductor nanostructures and
superlattices have recently attracted a lot of attention. This is
primarily due to two major factors. The first one is a con-
tinuous scaling down of the feature sizes in microelectronic
devices and circuits, which leads to an increase in power
dissipation per unit area of the semiconductor chip. Under
such conditions, the influence of size effects on thermal con-
ductivity becomes extremely important for device design and
reliability.1 The problem of thermal management is even
more severe for photonic devices such as vertical cavity sur-
face emitting lasers, in which the heat generation density
reaches 106 W/cm3. The second factor is a rebirth of the
field of thermoelectric materials, which has been brought
about by the emergence of large numbers of new artificially
synthesized materials, including those structured on an
atomic scale.2 In order to dissipate the increasing amount of
heat from the chip area, one has to engineer material param-
eters or structure geometry in such a way that thermal con-
ductivity is large along particular directions. To improve per-
formance of thermoelectrics, one needs to achieve low
thermal conductivity. These are two contradictory demands,
but both can be approached with appropriate modification of
phonon modes, e.g., phonon engineering.

The quest for superior thermoelectric materials generally
requires finding conditions such that the thermoelectric fig-
ure of merit ZT�S2�T/(� l��e) �where S is the Seebeck
coefficient,� is the electrical conductivity,� l is the lattice
thermal conductivity,�e is the electronic thermal conductiv-
ity, and T is absolute temperature� is as large as possible.
Recent reports that predicted strong enhancement of the fig-
ure of merit3–6 for semiconductor superlattices and quantum
wells treated rigorously only electronic contribution�e while
ignoring the effects of spatial confinement on� l . However,
a smaller value of� l would lead to even further increase of
ZT.

It was shown earlier that phonon transport in superlattices
can be significantly modified due to formation of minibands
and emergence of the mini-umklapp process, a new type of

umklapp scattering processes associated with transitions be-
tween the mini-Brillouin zones.7,8 A dramatic suppression of
the perpendicular thermal transport in superlattices at high
temperatures was also predicted in Ref. 9. In the structures
considered in Refs. 7 and 8, the modification of phonon
transport comes from the periodicity�additional to the crys-
tal lattice periodicity� in the direction of superlattice layer-
ing. In such a case, the minireciprocal lattice vectors associ-
ated with superlattice minizones give rise to mini-umklapp
processes that contribute to the thermal resistance.7 The situ-
ation is quit different in single quantum wells, which are
either free standing or embedded into material with distinc-
tively different elastic properties. Here, the phonon disper-
sion changes due to the phonon spatial confinement induced
by the boundaries. This affects all phonon relaxation rates,
and makes the thermal transport properties of quantum wells
rather different from those of superlattices. In this paper, we
address the issue of howspatial confinement of acoustic pho-
non modes directly modifies the lateral lattice thermal con-
ductivity in a free-standing quantum well.

Recently, some of us reported the results of experimental
investigation of the lateral thermal conductivity of nitride/
silicon/oxide membranes measured with a suspended
microstructure.10 An extremely large reduction of� l �more
than an order of magnitude� was observed in the temperature
range fromT�293 to 413 K. Such a huge drop in thermal
conductivity cannot be attributed entirely to boundary scat-
tering and structure imperfections, and is likely to be related
to modification of phonon modes and corresponding change
in the thermal transport. The geometry of the structure, ma-
terial parameters, and temperature regime used in our model
approximately correspond to the conditions of the experi-
ment. The results of numerical simulations presented below
were obtained for a free-standing quantum well since the
boundary conditions for the elasticity equation are the sim-
plest in this case. But the model can be easily extended to
include quantum wells embedded into rigid materials by
proper modification of the boundary conditions. Qualita-
tively, the change due to different boundaries will be dis-
cussed below.

The rest of the paper is organized as follows. In the next
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section we describe the calculation of the lattice thermal con-
ductivity, which takes into account modification of the
acoustic-phonon dispersion due to spatial confinement. The
model is based on the proper modification of the correspond-
ing bulk formulas and phonon group velocities obtained
from the continuous medium approximation with specific
boundary conditions. It also takes into account new selection
rules for three-phonon umklapp processes imposed by the
emergence of additional phonon dispersion branches. In Sec.
III, we present the results of numerical simulations. Confine-
ment of acoustic phonons and corresponding change in their
group velocity lead to an increase in the phonon relaxation
rates and, thus to the drop in thermal conductivity. Discus-
sion and comparison of the theoretical results with available
experimental data are given in Sec. IV. We present our con-
clusions in Sec. V.

II. THEORY

A. Calculation of the thermal conductivity

We consider a generic quantum well structure�see Fig. 1�
at relatively high temperatures so that three-phonon interac-
tion is expected to be the dominant scattering mechanism
limiting heat transfer. The electronic contribution�e is as-
sumed to be small in undoped fully depleted semiconductor
structures, and will be neglected in our calculations. It is well
known that the normal three-phonon scattering processes�N
processes� in which the total momentum is conserved cannot
by themselves lead to a finite thermal resistance, although
they influence it indirectly by redistributing phonon
modes.11,12 Only processes that do not conserve crystal mo-

mentum contribute to the lattice thermal resistance. Such
processes, further referred to as resistive, are boundary scat-
tering, impurity scattering, and the three-phonon umklapp
scattering process�U process�, in which the sum of phonon
wave vectors is not conserved but changes by a reciprocal-
lattice vectorG. Impurity scattering, in its turn, can be sepa-
rated for isotope scattering arising from the presence of at-
oms with different mass, dislocation scattering, and
scattering on atoms of different elements. In a high-quality
material, all of these impurity scattering mechanisms can be
strongly reduced except for the isotope scattering. For this
reason, we will be primarily interested in examining the ef-
fects produced by phonon confinement on the resistive pro-
cesses, which include the three-phonon umklapp processes,
isotope scattering, and boundary scattering.

In order to calculate� l , we use Callaway’s expression for
the thermal conductivity under the assumption that the resis-
tive processes are dominant,11
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wherekB is the Boltzmann constant,� is the Plank constant,
	 is the Debye temperature,x���/kBT, 
C is the combined
relaxation time, andv is the velocity of sound. Limiting our
consideration to only three major contributions to the resis-
tive process, we can write the following relation:
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where
U , 
B , and
 I are the relaxation times due to theU
processes�all allowed channels�, boundary scattering, and
impurity scattering, respectively. As it will become clear
later, all relaxation times are affected by the phonon confine-
ment.

From the first-order perturbation theory, the single-mode
relaxation rate of theU process for a thermal modeq can be
written as12,13
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where 
���������, �C3�2�(4�2/3na)(M 2/
v2)�2��2��2, na is the number of atoms per unit volume,
M is the atomic mass,� is the Grüneisen parameter,N0�
�N0(��) andN0��N0(��) are the equilibrium occupancies
of modesq� and q�, respectively, and the resonance factor
defined by (1�cos
�t)/
�2t���(
�) ensures that the
only significant contribution comes from frequencies for
which 
����������0. The summation overq� for
each polarization branch can be approximated by
�q���„na3/(2�)3…�dq��dS�, where � is the number of
polarizations of the interacting modeq�, a is the lattice con-
stant, andS� is the locus ofq� satisfying the restriction

��0. The equilibrium occupancy is given by the usual
Plank distributionN0�1/�exp(��/kBT)�1�. We can rewrite
Eq. �3� in the following form:

FIG. 1. Geometry of the structure used for model simulations
�lower part�. Geometry of the experimental structure�upper part�.
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where 
���������, � is the density of the crystal,
vg���
�/�q��n is the group velocity perpendicular to sur-
faceS�. In order to evaluate relaxation rates of Eq.�4�, we
should use the actual dispersion relations and group veloci-
ties, vg�vg„�(q)…, for phonons in a quantum well. The
modification of wave vector selection and frequency conser-
vation rules due to the spatial confinement should also be
taken into account. Evaluation of the single-mode relaxation
rate of the modeq, requires the integration over all possible
q� modes. Details of calculation ofvg„�(q)… and 1/
U are
given in the next two sections.

The impurity scattering mechanism, which is most af-
fected by spatial confinement through the group velocity, is
the so-called isotope scattering arising from the presence of
atoms with different mass. The relaxation time for this type
of impurity scattering was given by Klemens as12
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whereV0 is the volume per atom,M i is the mass of an atom,
f i is the fractional content of atoms with massM i , which is
different fromM .

The relaxation time for the boundary scattering can be
evaluated from the semiempirical relation12,14
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whereW is some characteristic thickness of a bulk semicon-
ductor or the width of a quantum well. More precise descrip-
tion of the boundary scattering can be obtained using the
approach of Ref. 1, which takes into account effects induced
by partially diffuse and partially specular interfaces and
boundaries. Equations�3�–�5� were derived for bulk and
cannot be applied for strictly 2D systems since in this case a
reduced zone picture and the umklapp formalism do not
work in the growth direction. In our calculations we will
consider rather thick quantum wells�many atomic layers� so
that the formulas can still be applied.

B. Phonon dispersion and group velocities

Confined phonon modes can be calculated using the elas-
ticity equation15–17

�2u

�t2 �st
2�2u��sl

2�st
2�grad divu, �7�

where u is the displacement vector, andsl and st are the
speeds of longitudinal and transverse acoustic waves in the
bulk. For Si, sl�9.04�105 cm/s andst�5.34�105 cm/s.
The normal components of the stress tensor on the free-
standing quantum well must vanish. These boundary condi-
tions, substituted instead ofperiodic boundary conditions of
the bulk material, bring about a significant change to the

phonon dispersion and group velocities. One should note
here that a significant modification of phonon modes can be
attained not only in a free-standing quantum well but also in
a quantum well embedded in rigid material�Si3N4 and SiO2,
for example� or in a heterostructure with relatively large dif-
ference of lattice constants. In the case of a quantum well
embedded in rigid material, the normal components of the
stress tensor are unrestricted but the displacementu is zero at
the boundary. This corresponds to the clamped-surface
boundary conditions.17

There are three different types of confined acoustic modes
in a quantum well characterized by their distinctive
symmetries:15 shear (S) waves, dilatational (D) waves, and
flexural (F) waves. TheS modes are similar to the trans-
verse (T) modes in bulk semiconductor and have only one
nonzero component of the displacement vectoru�(0,uy,0),
which is perpendicular to the direction of wave propagation,
q��(qx,0), and lies in the plane of the quantum well. The
dispersion relation for theS modes can be written as�n

�st�qx
2�qz,n

2 , where subscriptn denotes different branches
of the same polarization type, and theqz,n is quantized as
qz,n��n/W. TheD andF phonon modes have two nonzero
componentsu�(ux,0,uz) with dispersion relation given by
�n�sl�qx

2�ql
2 where the set of parametersql defines dif-

ferent branches of the same polarization denoted by subscript
l. Since these types of confined waves have a component in
the direction of propagation, they can be viewed as a modi-
fication of the bulk longitudinal (L) mode.

III. NUMERICAL RESULTS

Solving numerically Eq.�7�, we first find confined phonon
modes for a particular well width and material parameters
and then, by numerical differentiation, determine the group
velocities. The phonon group velocity in thenth branch is
defined asvg

(n)���n /�q. The dispersion relation for the
phononS and D modes are shown in Fig. 2 for a 10-nm-
wide Si quantum well. Corresponding group velocities for
the S andD modes are presented in Fig. 3. It is easy to see
that there are more dispersion and velocity branches for each
polarization type as compared to the bulk, and group veloci-
ties of all branches decrease. The higher the mode number
the smaller the group velocity so that for thermal modes the
decrease in group velocities is up to 3–4 times.

The change of polarization types and the���(q) depen-
dence brings also modifications of the energy and momen-
tum conservation laws. It is known that for isotropic semi-
conductors only two general types of processes are
allowed:12,18 T�T↔L, or L�T↔L. This restriction fol-
lows from the requirement that�i� all three interacting modes
cannot belong to the same polarization branch, and�ii � the
resultant mode should be above two initial�interacting�
modes. It turns out that for confined acoustic phonons, theD
mode is almost always above theS mode corresponding to
the same branchn �see Fig. 2�. Comparing dispersion on
Figs. 2�a� and 2�b�, one can see that only for a small fraction
of phonons with in-plane wave vectors close to the zone
center (qx�0.5 nm�1), some branchesn� of the D mode
may have a smaller energy than that of the correspondingS
mode. Thus, the processesDn�Sn↔Dn and Sn�Sn↔Dn
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are allowed and can be treated by analogy with the bulk
processesL�T↔L and T�T↔L, respectively. In our
model calculations we have neglected theS and D mode
intermixing for the n� branches close to the zone center.
More precise treatment would require separation of the fre-
quency range where theS mode is higher in energy than the
D mode, and consideringDn��Sn�↔Sn� as an allowed pro-
cess.

In order to obtain the scattering rate for theU process that
goes through all possible channels, we write Eq.�4� for each
of these channels, substitute dispersion relation and group
velocity calculated for the relevant range ofq, and then sum
all together. As an example, we show how to estimate the
relaxation rate for a dilatational mode of frequency�D(q) in
the scattering process that goes through the channel
D�S↔D. Following the derivation in Ref. 13, we assume
in Eq. �4� that frequencies����S and ����D(q)��S .
We use the calculated dispersion for�D(q) over the relevant

range ofq, and �S at the zone boundary. Thus, the relax-
ation rate can be written as

1


U
�

��2��D�q ��S��D�q ���S�

3�2�v2vg

�� 1

e��S /kBT�1
�

1

e���D�q ���S�/kBT�1� �
q�

dS�.

�8�

Here the integration over surfaceS� is being carried out the
same way as in Ref. 13. One can note in Eq.�8� that the
relaxation rate is positively defined since�D(q)��S��S .
The latter holds for all allowed channels. In our calculation
we neglect optical phonon modes since for Si, particularly in

FIG. 2. Dispersion relation for the shear�a� and dilatational�b�
modes in a 10-nm-wide silicon quantum well. The dashed lines
show the dispersion relation for the bulk transverse�a� and longi-
tudinal �b� acoustic-phonon modes.

FIG. 3. Group velocity as a function of the in-plane wave vector
for the shear�a� and dilatational�b� modes in a 10-nm-wide silicon
quantum well. The dashed lines show the group velocity for the
bulk transverse�a� and longitudinal�b� acoustic phonon modes,
respectively.
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�110� direction, their contribution in thermal transport is less
significant than that one of the confined acoustic phonon
modes. Although, for some material systems�like LiF or
NaF�, the optical dispersion curve intercepts all longitudinal
bulk modes in all directions —�100�, �110�, �111� — and
thus has to be included. Since optical phonon modes are not
significantly affected by spatial confinement, the situation in
quantum wells is not expected to be different from the bulk.

Finally, we evaluate phonon scattering rates using
Eqs. �5�–�8� for a bulk Si 10-�m-thick slab and Si 10- and
155-nm-wide quantum wells. The material parameters
used in simulation were the following:a�5.45 Å,
��2.42�103 kg/m3, M�46.6�10�27 kg, na�7.3,
��0.56, 	�625 K, and ��104�2.64 for three Si
isotopes.19 The relaxation rates due to different scattering
mechanisms are shown in Fig. 4 as functions of phonon fre-
quency. In the case of bulk material, theU process is a
dominant scattering mechanism over almost the entire fre-
quency range which is important for Si�from 1.80�1013 to
6.06�1013 rad/sec�. The latter is expected at high tempera-
tures. The scattering rate due to boundaries is not shown
since it is two orders of magnitude smaller than shown rates
for a given slab thickness. For a quantum well, the impurity
scattering rate that is proportional to�4 takes the lead at
frequencies above 2.5�1013 rad/sec. The dominant mecha-
nism at low frequencies is the boundary scattering. The over-
all scattering rate increases in a quantum well. One important
thing to note is that by improving crystal and surface quality
one can reduce the impurity and boundary scattering rates
but not the umklapp scattering rate. The increase of the
U-process scattering rate in a quantum well is a direct result
of the modification of phonon dispersion due to spatial con-
finement of the phonon modes. The latter leads to the reduc-
tion of the group velocity, which also strongly increases the
impurity scattering as it is proportional to 1/vg

3.

IV. DISCUSSION

In Fig. 5 we show the lattice thermal conductivity as a
function of the temperature for the quantum well and the
bulk material. In order to illustrate the contribution of differ-
ent scattering mechanisms to the thermal resistivity, the con-
ductivities limited only by the umklapp scattering and by the
umklapp and impurity scattering are also shown. The um-
klapp limited conductivity drops about 3.5 times because of
spatial confinement of phonons. The overall thermal conduc-
tivity of a quantum well at 300 K is about 13% of the bulk
Si.

The calculated value and temperature dependence of the
thermal conductivity are consistent with the results of the
experimental investigation recently reported by some of us.10

The measurements were conducted with a suspended micro-
structure which served as a thermal bridge using the differ-
ential and equivalent circuit methods. These measurements
have shown that the lateral thermal conductivity of a
Si3N4 �150 nm�/monocrystalline Si�155 nm�/SiO2�300 nm�
structure was about 1.5% of the conductivity of the bulk Si
and was almost a constant in the temperature range fromT
�293 to 413 K. The total error for the measurements was
estimated to be less than 20%. Although our model assumed
a free-standing quantum well, the results can be extended to
quantum wells with rigid boundaries. The lowest confined
phonon modes in a quantum well with clamped-surface
boundary conditions are higher in energy than those in a
free-standing quantum well, but the overall behavior and the
decrease of the group velocities are very similar in both
cases. The model presented here can be developed further to
include mixed boundary conditions and interface quality.
Our model applied to a 155-nm-wide Si well gives
kl�66.7 W/m K. For comparison, experimentally measured
thermal conductivity of bulk Si is 148 W/m K. This is a
significant drop although much less than that observed in the
experiment. The temperature dependence of the calculatedkl

FIG. 4. Phonon relaxation rates due to different scattering
mechanisms as functions of phonon frequency
���4�1013 rad/sec is a thermal mode atT�300 K�. The left
panel corresponds to the bulk material while the right panel to the
quantum well. The relaxation rates due to the umklapp (U), impu-
rity ( I), and boundary (B) scattering processes are depicted. Note
the change in scale.

FIG. 5. Lattice thermal conductivity as a function of tempera-
ture for bulk material�dashed� and the quantum well�solid�. Each
case is illustrated by three curves that correspond to the thermal
conductivity limited by the umklapp scattering only (U), the um-
klapp and impurity scattering only (U�I), and by all processes
including boundary scattering (U�I�B).
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is very close to the measured one. The discrepancy in our
calculated and measured values ofkl may be attributed to�i�
underestimated in our model boundary scattering,�ii � the
presence of other defect scattering processes�like scattering
on dislocations�, or �iii � crystal anisotropy, strain effects, and
related phonon focusing.

Our results are in excellent agreement with the most re-
cent data reported in Ref. 20. In Ref. 20, the authors pre-
dicted a significant reduction of the in-plane lattice thermal
conductivity for Si layers thinner than 0.2�m at tempera-
tures as high as 700 K. In accordance with their model, the
thermal conductivity of a 0.05�m pure Si film at 400 T in
silicon-on-insulator structures is about 30% of the bulk
value. Although their theoretical approach is different from
ours and it is applied to thicker Si layers, the obtained results
confirm our own conclusions. Our results are also in line
with experimental data presented in Ref. 21. It was reported
there that the lattice thermal conductivity of the Bi0.5Sb1.5Te3
films is considerably lower thankl of bulk crystals of the
same solid solution. The experimentally observed tempera-
ture dependence in Ref. 21 is very close to the one calculated
on the basis of our model. Further experiments and calcula-
tions are needed in order to completely clarify the physics of
extremely low thermal conductivity of semiconductor quan-
tum wells with free-surface or rigid boundaries. A possible
experimental verification of the phonon confinement nature
of the observed drop in the thermal conductivity can be an
observation of substantial dependence ofkl on quantum well
thickness. An absence of such dependence would be an in-
dication that the decrease is mostly due to phonon scattering
from boundary imperfection. Such work is currently in
progress.22

V. CONCLUSIONS

We have presented a study of the effects of phonon spatial
confinement on the lateral lattice thermal conductivity of
semiconductor quantum wells with free-surface boundaries.
It was shown that strong modification of the phonon disper-
sion and group velocities due to spatial confinement leads to
a significant increase of the relaxation rates in three-phonon
umklapp scattering, impurity scattering, and boundary scat-
tering processes. From the numerical calculations we predict
a strong decrease of the lattice thermal conductivity of a
quantum well �13% of the bulk value for a 10-nm-wide
well�. Our theoretical results favorably agree with the recent
experimental investigation of the lateral thermal conductivity
of a 155-nm-wide Si quantum well. Modification of the lat-
tice thermal conductivity by confined phonon modes opens
up a novel tuning capability of thermoelectric properties of
heterostructures, and may lead to a strong increase ofZT in
specially designed semiconductor nanostructures.
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