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Modification of the lattice thermal conductivity in silicon quantum
wires due to spatial confinement of acoustic phonons
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Lattice thermal conductivity in silicon quantum wires is theoretically investigated. The
bulk of heat in silicon structures is carried by acoustic phonons within a small region in
the first Brillouin zone. Our formalism rigorously takes into account modification of these
acoustic phonon modes and phonon group velocities in free- and clamped-surface wires
due to spatial confinement. From our numerical results, we predict a significant decrease
(more than an order of magnitude) of the lattice thermal conductivity in cylindrical quan-
tum wires with diameterD = 200 Å. The decrease is about two times stronger in quantum
wires than in quantum wells of corresponding dimensions. Our theoretical results are in
qualitative agreement with experimentally observed drop of the lattice thermal conductiv-
ity in silicon low-dimensional structures.
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1. Introduction

The development of sophisticated pattering and self-assembly techniques for quasi one-dimensional (1D)
semiconductor structures (quantum wires) [1, 2] has stimulated a large body of new work in semiconduc-
tor physicsover the last 10 years. Quantum wires with widths down to 100 Å and small size fluctuations
have been fabricated by regular electron beam lithography and wet etching [3]. Much of this interest into
quantum wireswas further stimulated by the possibility of novel ‘low-dimensional’ physics related to spatial
confinement of carriers and phonons [4, 5], as well as applications in electronic and optoelectronic devices.

Recently,it has been suggested that the thermoelectric figure of meritZT = S2σ/(kph + ke) can be
significantly enhanced in quantum wells [6] and quantum wires [7] because of strong carrier confinement
(whereS is theSeeback coefficient,σ is the electric conductivity,kph is the lattice thermal conductivity, and
ke is the electronic thermal conductivity). An increase to the thermoelectric figure of merit may also come
from the drop of the lattice thermal conductivity in low-dimensional structures due to the increased phonon–
boundary scattering [8]. Experimental evidence of the thermal conductivity drop in thin Si films has also been
demonstrated [9]. Some of us have also shown that an additional increase toZT canbe brought by the spatial
confinement of acoustic phonons in thin quantum well structures embedded within material of distinctively
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different elastic properties [10]. Thus, low-dimensional confinement of both carriers and phonons allows for
more degrees of freedom for maximizingZT.

The experimentally observed increase of the Seebeck coefficient in SiGe/Si multiple-quantum well struc-
tures has already given confirmation of the advantages of low dimensionality [11]. To date, most of the
experimentalattempts to attain increased thermoelectric characteristics in low-dimensional structures were
carried out with semiconductor superlattices or multiple-quantum well structures. Utilization of quantum
wires for thermoelectric applications would require a two-dimensional array of quantum wires fabricated us-
ing e-beam lithography or self-assembly techniques. Difficulties of high-quality fabrication of such an array
explain the scarcity of the experimental data for quantum wires.

As a prototype system for theoretical study of thermal conductivity we have chosen silicon quantum wires.
This choice was made for two reasons. Firstly, Si/Ge material systems (in its bulk or nanostructured form)
have already shown a great promise for high-temperature thermoelectric applications. Secondly, the problem
of lattices thermal conductivity in silicon quantum wires is also important in a view of continuous down
scaling of the device feature size, which may lead to the increased heat dissipation per unit area. Further
development of the deep-submicron technology makes the problem of heat management of nano-size silicon
structures particularly acute.

In this paper we investigate the lattices thermal conductivity in a generic cylindrical silicon quantum wire
taking into account modification of the acoustic phonon modes and phonon group velocities in free- and
clamped-surface wires due to spatial confinement effects. At room temperature and above, acoustic phonons,
with the wavevectors close to the Brillouin zone center, carry most of the heat in silicon bulk material and low-
dimensional structures. Our model rigorously takes into account all phonon scattering processes important
for silicon wires including mass-difference, Umklapp, and Casimir-limit boundary scattering. The rest of the
paper is organized as follows. In Section2, we present our theoretical model for the thermal conductivity.
Calculation ofacoustic phonon group velocities for free- and clamped-surface quantum wires is given in
Section3. The results of numerical simulation of the thermal conductivity and discussion are in presented in
Section4 and Section5, respectively and the conclusions will be given in Section6.

2. Theory

Thermalconductivity of semiconductors is the sum of the lattice (phonon)kph and electronicke compo-
nents. The maximum value of the thermoelectric figure of merit is usually obtained for doped semiconductors
whenke/kph ∼

1
2 [12], although this ratio for an intrinsic silicon wire is even lower. For simplicity, in this

paper welimit our consideration to the lattice (phonon) contribution to the thermal conductivity and neglect
its electronic part.

It is well known that the lattice thermal conductivity is written as [13] kph = (
1
3)6S(ω)νg3(ω)dω, where

S(ω) is the contribution to the specific heat per frequency interval from phonons of frequencyw,3(ω) is the
phonon mean-free-path (attenuation length), andνg is the phonon group velocity. Using the relaxation-time
methods by following Klemen’s [13] and Callaway’s [14] derivation, the expression forkph canbe further
rewritten as

kph =
kB

2π2νg

(
kB

~

)3

T3
∫ θ

T

0

τCx4ex

(ex − 1)2
dx, (1)

wherex = ~ω/kBT , kB is the Boltzmann constant,~ is the Plank constant,θ is the Debye temperature,
τC is the combined relaxation time, andνg is the phonon group velocity. Equation (1) is valid under the
assumption thatthe resistive scattering mechanisms, which do not conserve crystal momentum, are dominant.
These are the processes that contribute to the lattice thermal resistance. The general expression for the lattice
thermal conductivity, which includes an additional term for the normal scattering processes, can be found in
Refs [13, 14].
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The combined scattering relaxation time is found from Matthiessen’s rule

1

τC
=

1

τU
+

1

τB
+

1

τM
+

1

τR
, (2)

whereτC is the combined relaxation time due to different scattering mechanisms which are dominant in sili-
conat room temperature and above. Particularly, the mechanisms include Umklapp scattering(τU ), boundary
scattering(τB), mass-difference (or isotope) scattering(τM ) and resonant scattering for silicon with a high
concentration of impurity atoms. In order to determine the lattice thermal conductivity, we calculate all
phonon relaxation times in a low-dimensional structure taking into account their modification due to spatial
confinement of phonon modes. In the following, we outline all these mechanisms.

Mass-difference scattering arises due to the presence of atoms with a mass different from the average
atomic mass in a semiconductor. Different mass can come from isotopes of a particular element or impurity
atoms. In the latter case, the difference in stiffness constants between the impurity–host atoms and the host–
host atoms, as well as the difference in the atomic volume of the impurity atoms should also be included
in the phonon scattering rate expression. We use the standard formula for the mass-difference scattering but
introduce one important modification—group velocity dependence on the structure geometry and boundary
conditions. The mass-difference scattering rate can be written as [12, 13],

1

τM
=

V0ω
4

4πν3
g
0M ,

wherethe form-factor0M is given as

0M = fi [(1Mi /M)2+ 2{(1Gi /G)− 6.4γ (1δi /δ)}
2
]. (3)

HereV0 is the volume per atom,ω is the phonon frequency,fi is the fractional content of atoms with mass
Mi , which is different from the massM of the main atom,Gi is the average stiffness constant of the nearest-
neighbor bonds from the impurity to the host atom andG corresponding quantity for the host,δi is the cube
root of the atomic volume for thei th impurity in its own lattice,γ represents the average anharmonicity of
the bonds,1Mi = M − Mi , andM andδ are given as

M =
∑

i

fi Mi , δ =
∑

i

fi δ
′

i .

The above equations were derived for a regular bulk semiconductor. We extended them to a low-dimensional
structure assuming that a quantum wire has finite radius. Phonon confinement effects enter eqn (3) through
modification of the phonon group velocity, which has to be calculated for each particular geometry and
boundary conditions. In the limiting case of strictly one-dimensional (1D) structure the phonon frequency
dependence in eqn (3) changes to 1/τM ∼ ω2 [13]. We will not consider this case and limit our analysis
to therealistic situation with wire diameterD ∼ 200 Å or larger. Since in nature silicon always contains a
mixture of three main isotopes (92% of28Si, 4.6% of29Si, 3.1% of30Si), the isotope scattering significantly
contributes to the thermal resistance of the material.

The boundary scattering in our model is treated in the Casimir limit in that all phonons that have a positive
normal velocity lose the sense of their directionality and obey the equilibrium distribution when they reach
the boundary [15]. It can be shown that the effective boundary mean free path for a cylindrical quantum
wire of diameterD in the Casimir limit is given byL0 = D [15]. (For a rectangular quantum wire with
a squarecross-section with sideW, the Casimir limit mean free path isL0 = 1.12W). Thus, we write the
phonon–boundary scattering rate for a cylindrical quantum wire as

1

τB
=
νg

D
. (4)
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Resonance scattering is a process in which phonons interact with some localized modes. Under certain con-
ditions, theimpurities or point defects in a host semiconductor, which have some internal frequency of
oscillationω0, can give rise to the resonance absorption on this resonance frequency [16]

1

τR
=

Rω2

(ω2
0 − ω

2)2+�ω2
0ω

2
, (5)

whereR depends uponthe concentration of the impurities (point defects) and� is related to damping. We
will illustrate the resonant scattering effects using a silicon–germanium materials system as an example.

The expression for the three-phonon Umklapp scattering rate 1/τU was obtained by Klemens in the single-
mode relaxation time approximation [13]. The modification of the three-phonon Umklapp scattering pro-
cesses dueto the spatial confinement of phonon was treated in details by Balandin and Wang for free-surface
thin silicon films (quantum wells) [17]. The situation is analogous in our wire case here with the only excep-
tion for different phonon dispersion in quantum wires.

In order to evaluate relaxation rates of eqns (3)–(5), one should use the actual dispersion relations and
group velocities,νg ≡ νg(ω(q)), for phonons in the free-surface and clamped-surface quantum wires. The
modification of wavevector selection and frequency conservation rules due to the spatial confinement should
also be taken into account while dealing with the Umklapp processes [18].

3. Phonon group velocities in quantum wires

Most of the heat in silicon at room temperature or above is carried by the acoustic phonons with the
wavevectorsq close to the center of the Brillouin zone. In this region of theq-vector space, we can determine
the phonon dispersion in the elastic continuum approximation. In order to calculate the phonon dispersion
and phonon group velocities, which is more important for our model, we solve the elasticity equation using
the regular approach outlined in Refs [18, 19]. The elasticity equation is written in a vector form as follows

∂2u
∂t2
= s2

t ∇
2u+ (s2

l − s2
t ) grad div u, (6)

wheresl = (λ + 2µ)/ρ andst = µ/ρ are thevelocities of longitudinal and transverse acoustic phonon
modes in bulk semiconductor andλ,µ, ρ are Lame constants andρ is the density. We consider a cylindrical
wire of infinite length in thez direction and with a diameterD (see Fig.1). For simplicity it is assumed
that the material of a wire has an isotropic symmetry and it does not have the azimuthal dependency. The
components of the stress tensor are written as

σzz= λ

(
∂ur

∂r
+

ur

r
+
∂uz

∂z

)
+ 2µ

∂ur

∂r
,

σrz = µ

(
∂ur

∂z
+
∂uz

∂r

)
. (7)

We consider longitudinal and shear modes of the confined acoustic phonons because of their dominant con-
tributions to the lattice heat transport. The longitudinal acoustic waves have the displacements are given
by [19]

ur (r, z) =

[
d

dr
{B J0(ql r )+ AJ0(qtr )}

]
ei (qz−ωt),

uz(r, z) = i

[
q B J0(ql r )+

−q2
t

q
AJ0(qtr )

]
ei (qz−ωt), (8)
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Fig. 1.Geometry ofthe structure used for model simulations.

where J0 and J1 are ordinaryBessel functions,A and B are constants to be determined, andq is the z-
component wavevector (direction of propagation). In addition, parametersql andqt are related to the phonon
frequency as

ω = sl

√
q2

x + q2
l = st

√
q2

x + q2
t . (9)

The longitudinal waves are the coupled modes of the axial and radial modes that have the wavevectorsql and
qt , respectively.

For share waves we have a simple expression

ur (r, z) = J1(qtr )e
i (qz−ωt). (10)

This phonon mode has only one nonzero component, which is perpendicular to the direction of wave propa-
gation(z).

We will consider the both cases of boundary conditions: free-surface boundary, and clamped-surface
boundary. The free-surface boundary exactly corresponds to the boundary between an elastic material and
vacuum, but can be used for a ‘rigid’ material embedded within ‘softer’ material. In this case the normal
components of the stress tensor are vanish and the displacement is unrestricted:

σz,z = σr,z = 0, at r = ±D/2. (11)

The rigidity of the material can be quantitatively characterized by its characteristic phonon frequency� =

(4F/M)1/2. Since�(Si) = 40.9 meV and�(Ge) = 22.9 meV, we can consider silicon wire embedded
within germanium to have near-free surface boundary conditions. The ideal example of the free-surface sili-
con wire is the silicon whiskers grown by vapor–liquid–solid phase MBE [4]. The clamped-surface boundary
conditions describethe case of the quantum wire made out of the ‘softer’ material embedded within perfectly
rigid material. In this case boundary conditions take the form

ur = uz = 0, at r = ±D/2. (12)
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Fig. 2.Parameters A,ql andB, qt as functions of the in-plane vectorq for the longitudinal modes in Si free-standing wire with diameter
200 Å. Several of the lowest order branches are depicted.

Substituting (8) into (11) and (12) we obtain relations betweenq, ql andqt for longitudinalwave in the case
of free- and clamped-surface boundaries as outlined in Ref. [19]. Resulting equations have many solutions
for ql andqt (at eachparticularq), which are continuous single-connected curves ‘branches’. We label them
with an additional indexn : ql ,n andqt,n. These solutions will be either real or pure imaginary depending on
q andn. In our case, we are interested in the real part of solutions corresponding to the propagating phonon
modes which carry the heat.

4. Results of computations

Numerically solving transcendental equations [19], we find confined phonon modes for particular wire
material parametersand dimensions. In Fig.2A and B, we present an example of theql ≡ ql (q) andqt ≡

qt (q) dependencies forlongitudinal waves in the free-surface wire. The values ofql andqt above the abscissa
are real; the values ofql andqt below the abscissa are imaginary. Using eqn (9), we plot the dispersion
relations (seeFig.3) for the longitudinal modes for the free-surface (solid lines) and clamped-surface (dashed
lines) boundaries.The diameter of the silicon quantum wire is againD = 200 Å. The plot shows several
branches of the lowest order. As the next step, the group velocity is then obtained by numerical differentiation.
The phonon group velocity in thenth branch is defined asνg = /∂ω/∂q/n.

In order to determine the lattice thermal conductivity we have to find phonon group velocity as a func-
tion of phonon frequency. The functional dependence of the phonon energy and group velocity on the
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Fig. 3. The dispersion relation for longitudinal modes in Si wire of diameter 200 Å. Several branches of the lowest order are depicted.
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phonon wavevector is important for calculation of the Umklapp scattering rates [17]. For evaluating the
mass-differencescattering rates and boundary scattering rates in eqns (3) and (4), one needs to know the
average phonon group velocity in the quantum wire. This velocity is expected to be different from that of
the bulk. Figure4 depicts the phonon group velocity in a quantum wire as a function of the phonon energy
for several lowest modes. Different modes have different group velocities and the group velocity reaches the
bulk sound velocity only in some specific very short energy intervals. In order to obtain the resulting group
velocity we take the average group velocity as a function of phonon energy as follows,

νg(~ω) =

∑
n νg,n(~ω)Nn(ω)∑

n Nn(ω)
, (13)

whereνg,n is thegroup velocity of thenth mode,Nn(ω) is the number of oscillators with frequencyω on the
nth mode. The Boltzmann equation was used to find the relation between the density of oscillators onnth
and(n+ 1)th modes.

Nn+1

Nn
≈ e−(~ω)/kBT . (14)

Equation(14) is an approximation since we have a nonequidistant energy spacing for different phonon modes.
The average group velocity obtained from (13) is depicted in Fig.4 by a solid line. One can see that beginning
with somephonon energy values, the average group velocity coincides with the first mode group velocity.
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Table 1:

ρ 2.42× 103 kg m−3

0 × 104 2.64
M 46.6× 10−27 kg
θ 625 K
γ 0.56
sl 8.47× 105 cm s−1

st 5.34× 105 cm s−1

ω0(Ge–Ge) 300 cm−1
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Fig. 4.Phonon groupvelocity as a function of phonon energy. A few first modes are depicted (dashed lines). The average group velocity
is indicated as the solid line.

The overall value of the average phonon group velocity is only about half of the bulk phonon group velocity.
In a bulk the phonon group velocity approximately coincides with the sound velocity for small values of the
phonon wavevector. This is a significant drop.

Once we have found the average phonon group velocity over all contributing modes as a function of the
phonon energy, we can obtain the lattice thermal conductivity using eqns (3)–(5). Material constants used
for the simulation are summarized in Table1. The relaxation rates due to the different scattering mechanism
are shown in Fig.5 as functions of phonon frequency. In Fig.5 we separated the mass-different scattering to
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the isotopic scattering, which is always present, and impurity (Ge) mass-different scattering. In the defect-
free intrinsicbulk semiconductor the boundary, impurity (through mass difference) and resonant phonon
scattering vanish. So that the thermal conductivity of the pure bulk silicon is determined only by the Umklapp
and isotope scattering.

The scattering processes become more complicated in the presence of many impurity atoms. One can see
the strong influence of mass-difference scattering on relaxation time in the presence of impurity with signif-
icantly different mass (as Ge with respect to Si). Beginning from early terahertz frequencies this different
mass scattering became dominant. Resonance scattering mechanisms can also lead to a significant increase
in relaxation time but its influence is localized in the vicinity of resonance frequency.

5. Discussion

In Fig. 6 we show the lattice thermal conductivity of a quantum wire as a function of temperature. The
results arepresented for the quantum wires with free- and clamped-surface boundaries as well as for the bulk
material. The lattice thermal conductivity of the quantum wires is less than 10% of the bulk silicon value
in the temperature rangeT = 300–700 K. This significant decrease in the thermal conductivity is the result
of the increased isotope, Umklapp, and boundary–phonon scattering in a quantum wire. The latter comes
from the modification of phonon dispersion due to spatial confinement. The change of the phonon modes
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leads to the reduction of the group velocity and, thus, increased phonon relaxation. Since the mass-difference
scattering rate,which includes isotope scattering, is inversely proportionalν3

g, even small decreases of the
phonon group velocity give rise to a strong increase in the phonon relaxation.

The important thing to notice here is that there is very little difference between the thermal conductivity of
a free-standing quantum wire (free-surface boundaries) and a quantum wire embedded within rigid material
(clamped-surface boundaries). This means that the effect is always pronounced provided that there is a well-
defined distinct boundary between two materials of different elastic properties. The elastic properties can be
characterized either by the characteristic phonon frequency (�(Si)= 40.9 meV) or acoustic impedenceK =
ρν, whereρ is the density, andν is the bulk sound velocity. The small difference in thermal conductivity drop
for free-surface and clamed-surface boundaries can be explained as follows. Although different boundary
conditions lead to the different phonon dispersion modes and different energy spacing between them, the
slop of each dispersion mode, which defines the group velocity, is very close in both cases and always
smaller than that in the bulk.

We also calculated the lattice thermal conductivity of Ge-doped silicon quantum wires. As shown above,
the lattice thermal conductivity is rather sensitive to the presence of the impurity atoms (via the mass-
difference scattering mechanism). It was found that 10% mole fraction of Ge can decrease silicon bulk
thermal conductivity by up to 10% of its initial bulk value. The experimental data point reported in Ref. [20]
and oursimulation data point are shown on Fig.6. One should mention that the combination of two factors,
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spatial confinement of phonons and presence of impurity atoms, can reduce the lattice thermal conductivity
of aquantum wire by up to a few per cent of the bulk value of its constituent materials.

The decrease of the lattice thermal conductivity of an intrinsic quantum wire obtained in our case is much
more severe than the one recently reported in Ref. [21]. The authors of Ref. [21] treated in detail the phonon–
boundary scatteringexamining both diffusive and specular boundary scattering regimes. They found that the
thermal conductivity drops five times (for a wire with 500 Å side) as compared with the bulk value. The
decrease was attributed to the increased phonon–boundary scattering in the GaAs quantum wire. Although
our results are qualitatively similar, we obtain a stronger decrease of the thermal conductivity due to the
inclusion of phonon confinement effects. The discrepancy between these two-model descriptions is expected
to be particularly big for narrow high-quality quantum wires embedded within material of different elastic
properties. Under such conditions, the phonon modes are strongly confined and cannot be approximated with
the regular bulk longitudinal and transverse modes.

Our data indicate that the decrease of the thermal conductivity in intrinsic free-standing quantum wires
is larger than that which occurs in free-standing quantum wells of comparable size. Using the model for
thermal conductivity of a free-standing quantum well developed by some of us earlier [17, 22], we found that
at roomtemperature the following relation holdskph(wire)/kph(well) ∼ 0.48. This value was obtained for a
cylindrical silicon quantum wire of diameterD = 20 nm and a rectangular silicon quantum well of thickness
W = 20 nm. The ration of the wire to well thermal conductivity obtained on the basis of our model is close
to the one obtained in Ref. [21] although the model approaches are significantly different.

The decreaseof the thermal conductivity revealed in this work and its mechanism are in qualitative agree-
ment with some recent experimental findings for thin silicon films and Si/Ge superlattices. Some of us have
recently reported on the correlation between acoustic phonon folding in the small-period Si/Ge superlattices
and the lattice thermal conductivity drop [23]. It was found that the thermal conductivity of the superlattice
with the period 33 Å is 1.7 W mK−1 in the in-plane direction and 2.78 W mK−1 for the cross-plane di-
rection, respectively. The obtained thermal conductivity was considerably lower than that determined using
the bulk thermal conductivity values for Si, Ge, and SixGe1−x alloys. This drop in thermal conductivity was
attributed to the strong modification of the phonon modes (and corresponding phonon velocities) which lead
to the phonon folding observed in the Raman spectra [23]. A giant drop in the lattice thermal conductivity
(more thanan order of magnitude) of the thin silicon film embedded within silicon nitride and silicon dioxide
was reported by this group earlier [9].

Recent progressin fabrication of quantum wire arrays allows us to hope that such structures will soon be
available for thermoelectric applications. One of the examples of such a structure is an array of Bi nanowires
prepared using porous amorphous Al2O3 as a template [24]. The pores in amorphous Al2O3 are filledwith
Bi metal using a vacuum evaporation technique [24] or by the high-pressure liquid injection technique [25].
Another methodof preparing quasi-periodic arrays of short nanowires of different materials using electro-
chemical deposition was reported in Ref. [26].

6. Conclusion

We have studied the effects of spatial confinement of the acoustic phonons on the lattice thermal conduc-
tivity in silicon quantum wires. Most of the heat in silicon structures is carried by acoustic phonons with the
wavevectors close to the Brillouin zone center. In our analysis we rigorously took into account modification
of the phonon modes and phonon group velocities in free- and clamped-surface wires due to spatial con-
finement. It has been shown that phonon confinement leads to a significant decrease (more than an order of
magnitude) of the lattice thermal conductivity in cylindrical quantum wires with diameterD = 200 Å. The
decrease is stronger in quantum wires than in quantum wells of corresponding dimensions and does not differ
significantly for free- or clamped-surface boundaries. The predicted decrease of the lattice thermal conduc-
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tivity is important for further development of Si/SiGe-based thermoelectric devices. The decrease may also
complicate theheat management problem for future deep-submicron silicon-based devices and circuits.
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