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ABSTRACT: We investigated the thermal conductivity K of
graphene ribbons and graphite slabs as the function of their
lateral dimensions. Our theoretical model considered the
anharmonic three-phonon processes to the second-order and
included the angle-dependent phonon scattering from the
ribbon edges. It was found that the long mean free path of the
long-wavelength acoustic phonons in graphene can lead to an
unusual nonmonotonic dependence of the thermal con-
ductivity on the length L of a ribbon. The effect is pronounced for the ribbons with the smooth edges (specularity parameter
p > 0.5). Our results also suggest that, contrary to what was previously thought, the bulk-like three-dimensional phonons in
graphite make a rather substantial contribution to its in-plane thermal conductivity. The Umklapp-limited thermal conductivity of
graphite slabs scales, for L below ∼30 μm, as log(L), while for larger L, the thermal conductivity approaches a finite value
following the dependence K0 − A × L‑1/2, where K0 and A are parameters independent of the length. Our theoretical results
clarify the scaling of the phonon thermal conductivity with the lateral sizes in graphene and graphite. The revealed anomalous
dependence K(L) for the micrometer-size graphene ribbons can account for some of the discrepancy in reported experimental
data for graphene.
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Thermal transport in two-dimensional (2D) and one-
dimensional (1D) material systems attracts increasing

attention owing to the fundamental nature of questions and
practical importance of the subject.1 Theoretical predictions
that the intrinsic thermal conductivity K, limited by the crystal
anharmonicity alone, can diverge with the crystal size L in 2D
and 1D systems, continue to ignite debates.1−16 Theoretical
studies of the lattice thermal transport in 2D anharmonic
Fermi−Pasta−Ulam (FPU) lattices,2,3 2D anharmonic Len-
nard-Jones lattices,3 2D harmonic lattices with disorder,4 and
1D FPU chains2,3,5 suggested that the lattice, i.e., phonon,
thermal conductivity K, diverges as log(L) for 2D lattices and as
Lα for 1D chains (α < 1), where the length L is proportional to
the number of the lattice points N along the heat propagation
direction.2−5

Examples of the studies that revealed the divergence in 2D
thermal conductivity are numerous. Wang and Lee6 concluded
that in an 1D chain, with both longitudinal and transverse
motions of atoms, the thermal conductivity diverges as
∼log(N) or Nα, depending on the strength of transverse
interactions. For the strong transverse restoring force, K
diverges as log(N), for the intermediate strength as K ∼ N1/3,
and for the weak strength as K ∼ N2/5.6 Dimensional crossover
of the thermal conductivity, in the FPU lattices, was studied
computationally depending on the parameter δ = Nx/Ny, where
Nx (Ny) is the number of the lattice sites along the longitudinal

(transverse) direction x (y).2 It was found that K ∼ Nα for δ ≪
1 (1D case), while K ∼ log(N) otherwise (2D case).
From the other side, there were studies that suggested that

Fourier’s empirical law of thermal conduction is valid for 1D
and 2D systems.7−9 Casati et al.7 numerically found the finite
value for the 1D many-body chaotic system of N particles.
Jackson and Mistriotis8 investigated 1D and 2D lattices and
found that there exists a range of the lattice parameters for K
transition from infinite to finite value. Numerous molecular
dynamic (MD) simulations have given contradictory re-
sults.10−12 Yao et al.10 and Zhang and Li11 concluded that
the lattice thermal conductivity diverges in a carbon nanotube
(CNT) with increasing length analogously to the strictly 1D
systems. At the same time, Donadio and Galli12 demonstrated
the nondivergent thermal conductivity in CNTs using both
MD and the Boltzmann transport equation (BTE) approach.
A notable study by Mingo and Broido13 established that the

nondivergent thermal conductivity in CNTs results from the
three-phonon anharmonic processes of the second or higher
order. If the three-phonon processes are considered to the
second order, the thermal conductivity initially increases with
CNTs length but then saturates to some well-defined finite
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value. This result indicates that an accurate treatment of the
intrinsic thermal conductivity of the low-dimensional systems
should include the three-phonon anharmonic processes of the
higher order, i.e., beyond the conventional first-order Umklapp
scattering. Addition of the crystal lattice disorder or diffuse
interface scattering can eliminate the need for the second-order
three-phonon scattering in obtaining the finite thermal
conductivity for the low-dimensional systems.5,14 Most studies
agree that in three-dimensional (3D) crystals, the intrinsic
thermal conductivity, limited by the anharmonicity alone, has
nondivergent value.4,15 The first-order three-phonon Umklapp
scattering is sufficient for obtaining the finite K in 3D.13

Experimental studies of thermal transport in low-dimensional
systems have been performed using CNTs16−18 as a quasi-1D
system and graphene19−25 as a 2D system. In general very high
values were reported for both CNTs and graphene.16−25

Suspended few-layer graphene (FLG) flakes were utilized to
study the crossover of thermal transport as the system
dimensionality changed from the quasi-2D graphene to quasi-
3D graphite films.21 The strong length dependence was
observed experimentally in CNTs, which prompted suggestions
of the breakdown of Fourier’s empirical law.16 The latter is
related to the intrinsic thermal conductivity divergence
discussed above.
Although the strong size dependence was reported in many

s t u d i e s o f h e a t c o n d u c t i o n i n g r a p h e n e o r
CNTs,13,16,17,19−21,25−33 it is usually difficult to distinguish
among the various possible mechanisms. Among them are the
K(L) dependence in the ballistic thermal transport regime
where L ≪ Λ, the K dependence on the nanoribbon width due
to the acoustic phonon rough edge scattering or the
fundamental K size dependence in 1D or 2D lattices, where
anharmonic interactions are not sufficient for establishing finite
K over the given length scale L. These important questions call
for a rigorous study of the lateral size effects on the thermal
conductivity of graphene ribbons and graphite slabs. Consid-
eration of the graphene and graphite together is needed in
order to elucidate the differences in 2D and 3D phonon
transport.
In this letter we report on the theoretical study of the

thermal conductivity in graphene ribbons (see the geometry
and notations in Figure 1), which takes into account the
anharmonic three-phonon processes to the second-order
together with the angle-dependent phonon scattering from
the ribbon edges. The proper inclusion of the angle
dependence to the phonon edge scattering allowed us to
reveal an unusual nonmonotonic dependence of the thermal
conductivity on the ribbon length. Owing to the exceptionally
long phonon mean free path (MFP) in graphene, the abnormal
K(L) dependence can manifest itself in the ribbons of the tens
of micrometers lengths. Revisiting the theory of thermal
conduction in bulk graphite, we found that contrary to all
previous assumptions, the bulk-like 3D phonons make
substantial contribution to the thermal conductivity of graphite.
In the rest of the letter, we first address the thermal
conductivity in graphite slabs and then in graphene ribbons.
We start by revisiting the calculations of the thermal

conductivity of graphite reported in the classical works of
Klemens and co-workers.34,35 In these papers, Klemens
assumed that the phonon transport in graphite is essentially
2D-like for all phonon frequencies ω above a certain low-bound
cutoff frequency ωc. The phonons with ω > ωc are referred to
as 2D phonons, while those with ω ≤ ωc are called 3D

phonons. The contribution of low-frequency, i.e., long
wavelength, 3D phonons to the in-plane thermal conductivity
of graphite was assumed to be negligible.34,35 The physical
reasoning was that these phonons will experience stronger
scattering due to the interlayer coupling and will not have long
MFP. We re-examine this point in order to be able to provide a
meaningful comparison with the free-standing graphene.
In order to determine the role of 3D phonons in the in-plane

thermal conductivity, one needs to start with an accurate
phonon spectrum in graphite. We calculate it using the valence
force field (VFF) model of lattice dynamics. The details of the
VFF calculations for graphene and FLG were reported by us
elsewhere.21,26 The phonon frequencies ωs(q ⃗) of graphite
calculated along Γ−A and Γ−M crystallographic directions are
presented in Figure 2 for all phonon branches s. These
polarization branches include: (i) out-of-plane optical (s = ZO,
ZO′) and out-of-plane acoustic (s = ZA, ZA′) phonons with the
displacement vector normal to the basal planes; (ii) transverse
optical (s = TO, TO′) and transverse acoustic (s = TA, TA′)
phonons, which corresponds to the transverse vibrations within
the basal plane; (iii) longitudinal optic (s = LO, LO′) and
longitudinal acoustic (s = LA, LA′) phonons, which
corresponds to the longitudinal vibrations within the basal
plane.
In Figure 3 we show the equal energy surfaces (EESs) ωs(q ⃗)

= ωconst in graphite for the (a) LA and (b) TA phonon
branches. The surfaces are plotted for different values of ωconst
from the range 0 ≤ ωconst ≤ ωmax,s

|| (M), where ωmax,s
|| (M) is the

frequency of the phonon branch s = LA, TA at the M point of
the Brillouin zone (BZ). Each EES has the shape close to
cylindrical with the top and bottom covers for ωconst < ωc,s,
where ωc,s ≡ ωs(A) is the frequency of the phonon branch s at
the A point of BZ. The increase in ωconst leads to cylinder

Figure 1. (a) Schematics of a typical suspended graphene ribbon used
for experimental studies of thermal transport in suspended graphene
ribbons. (b) Graphene ribbon and notations used in the present model
for accounting the angle-dependent phonon scattering from the ribbon
edges.
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extension along qz-axis, i.e., perpendicular to the basal plane of
graphite. For almost all frequencies ωconst ≥ ωc,s, EESs have
cylindrical-like shapes, which narrow for qz close to qz,max. The
narrowing reflects an increase in the out-of-plane vibration
energy with increasing qz and corresponding reduction of the
in-plane vibration energy and radius q|| = (qx

2 + qy
2)1/2 of the

intersection of the cylinder and the plane q = qz. Both the
cylinder height qz and radius q|| increase with ωconst, and for
ωconst between the frequencies of the phonon branch s at M and
K points of BZ, the cylinders transform to the right-angle
prisms or parts of the right-angle prisms with the hexagonal
base (not shown in Figure 3). The latter originates from the
hexagonal symmetry of the graphite unit cell.

The Umklapp-limited phonon thermal conductivity tensor
for the basal plane of graphite can be written as26

∑ ω τ ω υ υ= ℏ ⃗ ⃗
∂
∂⃗

αβ α βK
L L L

q q
N
T

1
( ) ( ( ))

x y z s q
s s s s s

,
U, , ,

0

(1)

where ℏ is the Plank’s constant, Lx, Ly, Lz are the sizes of the
graphite slab, τU,s is the phonon Umklapp scattering rate for sth
phonon branch, ωs is the phonon energy of sth phonon branch,
υα,s(υβ,s) is the projection of group velocity of sth phonon
branch on the axis α (β), q ⃗(q∥⃗,qz) is the three-dimensional
phonon wave vector, N0 = 1/(exp[ℏωs/kBT] − 1) is the Bose−
Einstein distribution function, T is the absolute temperature
and kB is the Boltzmann’s constant.
To better elucidate the dependence of the in-plane thermal

conductivity of graphite on the sample lateral dimensions, we
derive an analytical expression by approximating EESs of
graphite (see Figure 3) with the cylindrical surfaces ωs(q ⃗) =
ωs

∥(q ⃗∥)θ(|qz,c| − |qz|), where θ(|qz,c| − |qz|) = 1 if |qz,c| − |qz|> 0
and θ(|qz,c| − |qz|) = 0 otherwise. The value of qz,c is determined
by ωs

∥: qz,c = ωs
∥/υs

⊥, where υs
⊥ = ωc,s/qz,max. The summation in

eq 1 is performed over longitudinal (LA) and transverse (TA,
ZA) phonon branches. The total thermal conductivity of
graphite is given by: K ≡ Kx x = ∑s=LA,TA,ZA(Ks

ω ≤ ωc,s + Ks
ω > ωc,s),

where Ks
ω ≤ ωc,s and Ks

ω > ωc,s are the contributions to the thermal
conductivity from inner (3D phonons) and outer (2D
phonons) area of EES ωs(q ⃗) = ωc,s, respectively:
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In eqs 2 and 3 ϕ is the angle between the in-plane phonon
wave vector and the temperature gradient. Substituting the
expression for the phonon Umklapp relaxation time τU,s =
Mυs

2ωmax,s/(γs
2kBT[ωs

∥]2), we performed calculation of Ks
ω ≤ ωc,s

and Ks
ω > ωc,s from eqs 2 and 3 using the actual phonon energies

and group velocities in graphite (see Figure 2). In eq 2 the low-
bound cutoff frequency ωmin,s depends on the in-plane size L of
the graphite sample and is determined from the condition that
the in-plane phonon MFP cannot exceed L of the sample L =
τU,s(ωmin,s)υs,

27,30,35 i.e., ωmin,s = [M[υs
∥]3ωmax,s/(kBTLγs

2)]1/2,
where M is the graphene unit cell mass and γs is the branch-
dependent average Gruneisen parameter. Note that for the
infinitely large graphite sample ωmin,s = 0.
Several research groups have reported different values of the

average Gruneisen parameters in graphite, ranging from γ = 1

Figure 2. Phonon energy spectrum in bulk graphite calculated using
VFF method. Note that LO, TO, LA, TA, ZA phonon branches are
nearly double-degenerate except for a region near the Γ point.

Figure 3. Equal energy surfaces for (a) LA and (b) TA phonon
polarization branches in graphite. The EES model representation is
used to elucidate the role of 3D bulk phonons in heat conduction
along graphite basal planes and obtain analytical expression for the
thermal conductivity scaling with the lateral size of graphite slab.
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to 2.34−38 The fact that the Gruneisen parameter in graphene
and graphite is a strong function of the phonon polarization
branch is known.39 For this reason, in our calculations, we use
separate Gruneisen parameters for each phonon branch,
obtained by averaging of mode-dependent Gruneisen param-
eters over the relevant phonon wave-vector ranges: γLA = 2, γTA
= 1, and γZA = −1.5. With these parameters, the calculated RT
thermal conductivity for infinite graphite slab (L → ∞, ωmin,s =
0) is K = 1900 W/mK, which is in good agreement with
experimental values for the highly oriented pyrolytic graphite.40

The unexpected finding is that the contribution of the long-
wavelength 3D phonons Ks

ω ≤ ωc,s to the thermal conductivity,
which was assumed as negligible in the earlier works,34,35 is
large and constitutes ∼50% for LA phonons and ∼40% for TA
phonons. We also checked the validity of the assumption that
all phonon modes in graphite are populated at RT, which is
often used in the thermal conductivity calculations. Our results
show that in the case of graphite, this assumption overestimates
Ks
ω > ωc,s, i.e., the contribution of 2D phonons, by a factor of

∼1.45 for LA and ∼1.15 for TA branches.
Figure 4 shows the dependence of the thermal conductivity

of graphite on the slab length L for different temperatures. For

small L, when ωmin,s > ωc,s, K
3D = ∑s=LA,TA,ZAKs

ω ≤ ωc,s = 0, while
K2D = ∑s=LA,TA,ZAKs

ω > ωc,s ∼ log L, therefore total thermal
conductivity scales as K ∼ log L. For larger L, when ωmin,s ≤
ωc,s, K

2D is independent of L, while K3D ∼ (A − BL−1/2), and
the total thermal conductivity increases with increasing L as K =
(K0 − BL−1/2), where K0, A, and B are parameters independent
of L. When the sample size L → ∞, then ωmin,s → 0, and the
thermal conductivity approaches bulk graphite limit. For the
realistically chosen material parameters, the thermal con-
ductivity of graphite approaches the bulk limit at L ∼ 10
mm. The obtained results are unexpected in two accounts.
First, the contribution of the 3D bulk phonons to the thermal
conductivity of graphite along the basal planes is much larger
than it was previously believed. Second, there is fundamental
lateral size dependence of the thermal conductivity of bulk
graphite all the way up to the length L ∼ 10 mm. This
dependence is different from the size dependence in the
ballistic transport regime. It manifests itself in graphite up to a

rather large length scale L owing to the large phonon MFP in
graphite basal planes. Our analytical derivations allowed us to
explicitly reveal these phenomena.
Now we turn to thermal transport in graphene ribbons. The

schematic view of a suspended graphene ribbon used in the
experiments and pertinent notations are shown in Figure 1.
Unlike in graphite, the phonon transport in graphene is 2D all
the way down to ω = 0. The long-wavelength phonons weakly
scatter in the three-phonon Umklapp processes in graphene
calculated to the first order13,26,28,34,35 resulting in divergent K.
In his treatment of thermal conductivity of graphene, Klemens
overcame the problem of the long-wavelength phonons by
introducing the size-dependent cut-off frequency ωmin,s defined
by the equation L = τ(ωmin,s)·νs

∥.35 This approach leads to the
logarithmic dependence of the thermal conductivity on L,
which is in line with the results obtained for the ideal 2D
lattices.2,3 However, the dependence K ∼ log(L) is obtained
using a number of simplifications, e.g., treatment of the
anharmonic phonon scattering to the first order.27,30,35 This
model is not suitable for the large graphene samples when other
scattering mechanisms, e.g., multiphonon processes, scattering
on edges, grains, and crystal lattice imperfections, begin to limit
the thermal conductivity. The scattering from the edges of
graphene ribbons also deserves more rigorous treatment due to
the large phonon MFP in 2D graphene.
In order to study the thermal conductivity dependence on

the lateral size of the graphene ribbon, we consider the phonon
anharmonic interactions to the second order and the angle
dependence of the phonon scattering from the ribbon edges.
We specifically focus on ribbons with the micrometer width d
and length L in order to deal with the actual phonon dispersion
in graphene and to ensure the diffusive transport regime. In the
nanometer-thick graphene ribbons the phonon dispersion is
different owing to the phonon mode quantization, and the
lateral size dependence is dictated by the ballistic conduction.32

The total phonon scattering rate for the phonon mode (s, q) is
given as

τ τ τ τ⃗ = ⃗ + ⃗ + ⃗q q q q1/ ( ) 1/ ( ) 1/ ( ) 1/ ( )s s s stot, U, 2, B, (4)

where τU,s is the phonon mode-dependent three-phonon
Umklapp scattering rate calculated to the first order, τ2,s is
the mode-dependent three-phonon scattering rate calculated to
the second order,13,41 and τB,s = Λb(s,q ⃗,p)/νs∥(q ⃗) is the phonon
mode-dependent boundary scattering rate, where p is the
specularity parameter. We perform the calculation of τU,s using
our diagram technique described in details elsewhere.25,26 The
phonon mode-dependent MFP Λb(s,q ⃗,p) limited by the
boundary scattering is calculated as a function of the angle φ
between q ⃗ and the thermal gradient for each phonon mode.
Therefore in the case of rectangular ribbon τB,s depends both
on L and d (see Figure 1b).
In order to evaluate τ2,s we include the following processes:

the long-wavelength phonon q ⃗ interacts with the short-
wavelength phonon q ⃗′ in the normal process forming a phonon
q ⃗i. The phonon qi⃗ then interacts with the phonon q ⃗″ in the
Umklapp process forming a phonon q ⃗″. The scattering rate of
such processes in graphene takes the form

∫τ ν
γ

π
ω δ ω= ′ Δ ⃗′ ⃗″

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟k T

M
a

q q
1 32

9 ( )
(

2
) ( ) ( )d d

s s
s

2,

B
2

2
4 4 2

(5)

where a is the length of the unit cell. We derived eq 5 following
the approach described in ref 41 and taking into account 2D

Figure 4. Dependence of the in-plane thermal conductivity of graphite
on the length L of the graphite slab. Note that the Umklapp-limited
thermal conductivity of 3D graphite reveals the size dependence even
for rather long slabs near RT.
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phonon density of states in graphene. Considering all possible
three-phonon processes in graphene using a formalism, derived
by us in ref 26, we found that in the normal processes with the
long-wavelength phonons |q| < 0.05qmax, intensively participate
phonons with |q ⃗′| ∼ (0.6−0.7)qmax, forming the phonons |
qi|∼(0.55−0.75)qmax, while in the Umklapp processes, the
phonons |qi| intensively interact with the phonons |q ⃗″|∼(0.5−
0.7)qmax. Therefore, we can assume that for the most intensive
second-order processes |q ⃗' | is close to (0.6−0.7)qmax, and |q ⃗″ | is
close to (0.5−0.7)qmax and can rewrite eq 5 as follows

τ
π

ν
γ ω=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟k T

M
1 2

9 ( )s s
s s

2,

B
2

2
4

max ,
(6)

A similar formula was derived by Mingo and Broido13 for
CNTs. The thermal conductivity K of graphene flakes was
calculated using eq 1, substituting τtot,s(q ⃗) from eq 4 instead of
τU,s and taking into account the actual graphene phonon energy
spectrum determined from VFF method.26

Figure 5 shows the dependence of the RT phonon thermal
conductivity of the rectangular graphene ribbon on the ribbon
length L for different specular parameters p and the ribbon
width d. The specularity parameter 0 < p < 1 determines the
fraction of the diffusively scattered phonons contributing to the
thermal resistance and is defined by the edge roughness.42 The
long-wavelength phonons weakly participate in three-phonon
Umklapp processes. Therefore, their contribution to the
thermal conductivity is mostly limited by the boundary
scattering up to the length scale L ∼ 100 μm. For L >100
μm, the second order anharmonic processes become the main
scattering mechanism for the long wavelength phonons. The
most striking feature in Figure 5 is a nonmonotonic
dependence of the thermal conductivity on the ribbon length
L. Such an unusual K(L) characteristic suggests that the
measured thermal conductivity of graphene ribbons of certain
length, i.e., L/d ratios, will be higher than that of graphene
samples of other sizes and geometries.
We explain the possibility of the nonmonotonic dependence

via the following considerations. A portion of the acoustic
phonons in the rectangular ribbon with the angle φ < arcsin(d/
(d2 + L2)1/2) does not scatter from the ribbon edges. MFP of
these phonons Λb = L/cos(φ) is determined only by the ribbon
length L (at fixed d) and schematically shown in Figure 1b by
the violet and pink arrows. The rest of the phonons participate
in the edge scattering, and their Λb depends on both L and d
(schematically shown in Figure 1b by the blue and green
arrows): Λb ≈ ((d·n)2 + L2)1/2, if n ≤ (1 + p)/(1 − p) and Λb =
d·(1 + p)/(1 − p) otherwise, where n shows a number of
reflections from the ribbon boundary. We calculated the
number of reflections n numerically (at fixed L, d, φ) from the
condition Λb·cos(φ) ≤ L. The interplay between contributions
of the above-mentioned two groups of phonons as well as the
anisotropic anharmonic scattering mechanisms leads to the
predicted nonmonotonic behavior of the thermal conductivity
K(L).
At small L the phonons with the MFP limited by the length

only, Λb(L), are the main heat carriers, and thermal
conductivity rapidly increases with L. The contribution of
these type of phonons to the thermal conductivity in graphene
ribbon with d = 1 μm is shown in Figure 5b with the dashed
line. Further increase of L decreases φ with the corresponding
reduction of the number of phonons with Λb(L) and increases
of the number of phonons that have MFP dependent on both

L, d, and p − Λb(L,d,p). Therefore, the contribution of the
phonons with Λb(L,d,p) increases (as shown in Figure 5b with
dotted line) leading to a maximum in the thermal conductivity
curve. For L>∼100 μm, Λb is mainly determined by d, and the
thermal conductivity saturates to its finite value. The finite
value in Figure 5b for d = 5 μm is in agreement with the
experimental data.19−22 The values for ribbons with large d and
p→ 1 are larger than what was reported experimentally because
our model intentionally does not include nonidealities such as
defects or grain boundaries.
Another important observation from Figure 5a is that the

abnormal nonmonotonic K(L) dependence can only be
observed in graphene ribbons with the relatively smooth
edges characterized by the specularity parameter p > 0.5. The
specularity parameter p = 1 means that all phonons scatter from
the edges elastically preserving their momentum along the
ribbon length. Such scattering events do not contribute to the
thermal resistance of the sample. The graphene ribbons with
smooth edges are feasible technologically via a number of
different techniques, e.g., unzipped CNTs or mechanical

Figure 5. (a) Dependence of the thermal conductivity of the
rectangular graphene ribbon on the ribbon length L shown for
different specular parameters p. The width is fixed at d = 5 μm. (b)
Dependence of the thermal conductivity of the rectangular graphene
ribbon on the ribbon length L shown for different ribbon width d. The
specular parameter is fixed at p = 0.9. Note in both panels an unusual
nonmonotonic length dependence of the thermal conductivity, which
results from the exceptionally long MFP of the low-energy phonons
and their angle-dependent scattering from the ribbon edges.
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exfoliation.43−47 The suspended graphene ribbons of rectan-
gular shape and high-quality edges have also been demon-
strated.19−22 Thus, the p > 0.5 requirement is not too restrictive
for observation of the nonmonotonic K(L) experimentally.
The K(L) nonmonotonic dependence is also a function of

the specific geometry of the ribbon via the angle φ dependence
on L and d. The nonmonotonic character disappears in circular
geometry, such as in membranes used in some of the graphene
thermal experiments.22,48 The study of the radius dependence
of the thermal conductivity in CNTs demonstrated the
monotonic increase of K with the radius R until the constant
values is reached at R ∼ 10−100 μm.13 Our results for the
infinitely wide ribbons (d → ∞) also show the monotonic
increase of K with the saturated value for L > 100 μm. This
finding is in line with the predictions made for the CNTs.13 As
in the case for CNTs, the thermal conductivity of graphene
ribbons limited only by three-phonon Umklapp scattering
increases monotonically with L (see dashed−dotted curve in
Figure 5b) without saturation to the constant value. The finite
value results from inclusion of the anharmonic three-phonon
processes of the second-order.
The present study differs from previous reports of the size

dependence of the thermal conductivity of graphene
ribbons.26−32,35,49 We consider the micrometer size ribbons
and take into account both the ribbons length and size. In the
case of infinitely wide ribbons, we obtain the “conventional”
monotonic dependence of the thermal conductivity on L in
agreement with previous reports. The saturated values of the
infinitely long ribbons are in agreement with those in ref 26.
The anisotropic phonon anharmonic scattering,49 in combina-
tion with the angle-dependent boundary scattering, results in
the unusual nonmonotonic dependence of the thermal
conductivity on L. One should note here that Haskins et al.31

predicted a weaker nonmonotonic dependence of the thermal
conductivity on the width for 100 nm long zigzag nanoribbons.
Although their result cannot be compared directly with our data
for the micrometer-size ribbons, it provides an example of
another situation where the thermal conductivity is strongly
affected by the shape and edge scattering of the graphene
sample. The experimental study of the size dependence of the
thermal conductivity in graphene ribbons can be performed
using the optothermal Raman technique or electrical self-
heating method.1,19−25,50 However such a study is challenging
owing to difficulties of preparation of defect-free graphene
ribbons with different lateral dimensions and the same shape.
In conclusion, we investigated the thermal conductivity K of

graphene ribbons and graphite slabs as the function of their
lateral dimensions. Our results suggest that the long mean free
path of the long-wavelength acoustic phonons in graphene
results in abnormal nonmonotonic dependence of the thermal
conductivity on the length and width of a ribbon. Moreover,
our analytical derivations also indicate that the bulk-like 3D
phonons in graphite make a rather substantial contribution to
its in-plane thermal conductivity. The predicted nonmonotonic
dependence of the thermal conductivity on the length of the
ribbon for the micrometer-size graphene samples can account
for some of the discrepancy in reported experimental data for
graphene.
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